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ABSTRACT We proposed a new conjugate gradient type hybrid approach in this study, 

which is based on merging Hestenes-Stiefel and Dai-Yuan algorithms using the spectral 

direction conjugate algorithm, we showed their absolute convergence. Under some 

assumptions and they satisfied the gradient property. The numerical results demonstrate 

the efficacy of the developed feedforward neural network training approach. To 

estimate the size of the population using the Thomas Malthus population model, and 

Our numerical results were very close to the model of the Tomas Malthose Model, we 

can use the method to predict other problems through the use of ann.   
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1. INTRODUCTION 

Multilayer feedforward neural networks (MLFFNN) are parallel computational models made up of 

densely interconnected, adaptable processing units that have an innate proclivity for learning from 

experience as well as discovering new information. They have been effectively employed in various 

domains of artificial intelligence [1],[2], [7], and [8] are often found to be more efficient and accurate 

than other classification techniques [17] due to their exceptional capability of self-learning and self-

adapting. Feedforward neural networks (FNN) are often operated using the following equations: 

𝑛𝑒𝑡𝑗
𝑖 = ∑  

𝑁𝐿−1

𝑖=1

𝑤𝑖,𝑗
𝑖−1𝑥𝑗

𝑖−1 + 𝑏𝑗
𝑖, 𝑂𝑗

𝑙 = 𝑓(𝑛𝑒𝑡𝑗
𝑙) (1) 

Where ( )l

jf net  is the activation function , 
l

jnet  is the sum of the weight inputs for the j-th node 

in the l - th layer (j=1,2,…, Nl ), 
,i j

w  is the weights from the i-th neuron to the j-th neuron at the 

1,l l th− −  layer ,respectively, 
l

jb  is the bias of the j th− neuron at the l th− layer and 
l

jx is the 

output of the j-th neuron which belongs to the l th−  layer. The goal of training a neural network is to 

iteratively change its weights to minimize the difference between the network's actual output and the 

training set's desired output [26]. Finding such a minimum is actually the same as finding an optimal 

minimization of the error function, which is defined as: 
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(𝑗)

− 𝑇𝑖
(𝑗)
)
2
 (2) 

The variables  and 
i i

O T are the desired and the actual output of the i th−  neuron, respectively. 

The index j  denotes the particular learning pattern. The vector w is composed of all weights in the 

net. The most extensively used approach for training multilayer feedforward neural networks is 

backpropagation (BP). The weight vector 𝑤 is adjusted using the steepest descent with respect to 𝐸 in 

the typical backpropagation algorithm: 

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑘𝑔𝑘 , 𝑔𝑘 = ∇𝐸(𝑤𝑘) (3) 

Where the constant   is the learning rate belongs to the interval (0,1) and 
k

w is a vector 

representing the weights at iteration (epoch) step k . The back propagation process takes an inordinate 

amount of time to modify the weights between the units in the network since the steepest descent method 

has a slow convergence rate and the search for the global minimum frequently becomes stranded at a 

bad local minimum[15]. As a result, many studies have proposed ways to improve this method, with 

several relying on a novel adaptive learning rate [4], [2], and [1]. Others utilize other cost functions or 

dynamic modification of the learning parameters [28], while others use the momentum term [27], [20], 

[13].Many people use weight initialization procedures that are unique to them [24]. The majority of 

them use higher order gradient optimization algorithms to reduce the appropriately error function [16], 

[22], a multivariable function that is dependent on the network's weights. However, the issue of 

speeding up the learning process remains. Especially when using big training sets and networks. The 

training of neural networks can be expressed as a non-linear unconstrained optimization problem [23], 

[3], [14]. 

The following is a breakdown of how this search is structured. The conjugate gradient algorithms are 

briefly described in Section 2. Section 3: A new hybrid conjugate gradient algorithm has been 

developed. Model of the Population, Section 4. Section 5 contains numerical comparisons and 

experiments. 

2.  CG TECHNIQUE 

Due to their speed and simplicity, conjugate gradient (CG) methods are among the most often and 

efficiently utilized approaches for large-scale optimization issues. Due to their simplicity and minimal 

memory needs, conjugate gradient algorithms play a key role in rapidly training neural networks. They 

do not require the evaluation of the Hessian matrix or the impractical storage of an approximation of it. 

There are various conjugate gradient algorithms in the literature that have been extensively used for 

neural network training in a range of applications [5], [18]. The linear combination of the negative 

gradient vector at the current iteration with the previous search direction is the key idea for calculating 

the search direction. The method for determining the search direction is as follows: 
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𝑑1 = −𝑔1; 𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 (4) 

Conjugate gradient methods differ in their way of defining the multiplier k . The most famous 

approaches were proposed by Fletcher Reeves (FR), Polak–Ribere (PR) and Hestenes–Stifel (HS) 

[11], [25], [12]:  

1 1 1 1, ,
T T T

FR PR PRk k k k k k

T T T

k k k k k k

g g g y g y

g g g g g y
  + + + += = =  

The conjugate gradient methods using 
FR update were shown to be globally convergent [9], [21], 

[19]. However the corresponding methods using 
PR  or 

HS update are generally more efficient ever 

without satisfying the global convergence property. [6] In the convergence analysis and 

implementations of CG methods, one often requires the inexact lien search such as the Wolfe line 

search. The standard Wolfe line search requites  
k

  satisfying: 

( ) ( ) T

k k k k k k kE W d E W g d +  +  (5) 

( )T T

k k k k k kg W d d g d +   (6) 

or strong Wolfe line search: 

( ) ( ) T

k k k k k k kE W d E W g d +  +  (7) 

1k k k kg d g d+ + −  (8) 

Where 0 1      

Moreover, an important issue of CG algorithms is that when  the  search direction (4) fails to be 

descent (by Descent, we mean 0T

k kg d k   directions   we  restart   the  algorithm  using   

the negative gradient direction to grantee convergence . A more sophisticated and popular restarting 

is the Powell restart.  

2

1 10.2T

k k kg g g+ +  (9) 

Where,  denotes to the Euclidean norm. Other important issue for   then CG methods is that the 

search directions generated from equation (4) are conjugate if the objective function is convex and line 

search is exact i.e: 
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0 ,T

i jd Gd i j=    (10) 

Where, G is the Hessian matrix for the objective function. Dai and Lioa in [10] showed that the 

equation (10) can be written as follows: 

1 0T

k kd y+ =  (11) 

which is called pure conjugacy condition and generalize to the 

1 1 1, 0 ,T T

k k k k k k kd y t g s t s W W+ + +=  = −  (12) 

for general objective function with inexact line search. 

3.  A NEW CONJUGATE ALGORITHM HYBRID ALGORITHM 

We will derive New in this section. Unconstrained optimization using a hybrid conjugate gradient 

technique. Using the direction conjugate algorithm, the Hestenes-Stiefel and Dai-Yuan algorithms were 

combined [16]. The formula for determining direction is known to us 

1 1 1k k k k
d g d

+ + +
= − +  (13) 

Hestenes-Stiefel algorithm 

1

T
HS k k
k T

k k

g y

d y
 +=  (14) 

Dai-Yuan algorithm 

2

1kDY

k T

k k

g

y d
 +=  (15) 

Suppose that 

*

1 1

HS

k k
 

+ +
=  (16) 

1

1 1 1
(1 )KH DY HS

k k k
   

+ + +
= + −  (17) 

1 1 1

HS

k k k k
d g d

+ + +
= − +  (18) 

1 1 1 1
( (1 ) )DY HS

k k k k k
d g d  

+ + + +
= − + + −  (19) 

Equality of equation (18) with (19) and note of the 
k

d equal in equations (18) and (19) we get  



 

73 

 

1 1 1 1 1
( (1 ) )HS DY HS

k k k k k k k
g d g d   

+ + + + +
− + = − + + −  (20) 

Subtracting the 
1k

g
+

 of two said from above equation we have  

1 1 1
( (1 ) )HS DY HS

k k k k k
d d   

+ + +
= + −  (21) 

After some algebra, we get  

1

1 1
2

HS

k

HS DY

k k




 
+

+ +

=
−

 (22) 

Substituting   in the equation (19) 

1 1 1 1
1 1

1 1 1 1

(1 )
2 2

HS DY HS
KH HSk k k
k kHS DY HS DY

k k k k

  
 

   
+ + +

+ +

+ + + +

= + −
− −

 (23) 

After some algebra of above equation we get a new formula denote by 
1

1

KH

k


+   is defined by 

2
1 1

21

1 1

( )

(2 )

T
KH k k
k T T

k k k k k

g y

d y g y g
 +

+

+ +

=
−

 (24) 

Substituting above equation in spectral direction conjugate algorithm, which is developed [1]. 

 There for we have  

1 1

21 1 1 1

1

( )
T

KH KHk k
k k k k k

k

d y
d g d

g
  

+ + + +

+

= − + +  (25) 

New Algorithm KH1 

Step[1]:- Initialize 
1

w   and choose  ,    such that 0< 1,    [0,1]

, 0
G

E    and
max

 , set 1K k = .   

Step[2]:- Calculate the error function value 
k

E and its gradient
k

g .   

Step[3]:- If ( ) or ,
k G k

E E g    set 
*

k
w w=  and 

* ,
k

E E=  return 

goal is meet and stop. 

Step[4]:- compute the descent direction : 

if 1k =  then, 
k k

d g= −  go to step 6 



 

74 

 

Else 

2
1 1

21

1 1

( )

(2 )

T
KH k k
k T T

k k k k k

g y

d y g y g
 +

+

+ +

=
−

 and then compute:  

1 1

21 1 1 1

1

( )
T

KH KHk k
k k k k k

k

d y
d g d

g
  

+ + + +

+

= − + + . 

Step[5]:- Compute the learning rate 
k

  by line search procedure, such the 

standard Wolfe conditions (5) and (6). 

Step[6]:- update the weights: 

1k k k k
w w d

+
= +  and set 1k k= + . 

Step[7]:- If 
max

k k  return Error goal not meet and stop else go to step         (2). 

4.  POPULATION MODEL 

The term "population" refers to all living organisms of the same type that reside in the same 

geographical area. The phrase "population" is used at the conference Sociology aware to describe to the 

human people who dwell in a country or region group. And the special science of demography is 

concerned with the statistical elements of human population. 

The topic of modeling the population of the key issues that affected the environment Ecology science 

is the application of mathematical modeling for the study of movement) dynamic organisms in the 

growth and decay. Changes in population sizes as a result of interactions between individuals in the 

natural environment with members of the same gender, as well as other types of living animals, are 

included in the population modeling study. Knowing the population is one of the most important 

concerns for various countries around the world, and many conduct censuses every ten years to 

determine the true population numbers, and the importance of knowing the population in its close 

association with various aspects of life in human societies, and strong development plans and their 

relationship to and provision of [16]. 

It was true for population modeling beginning in the eighteenth century with the development of 

tools for modeling the change in the number of individuals to comprehend population expansion and 

contraction. When contemplating the fate of humanity, British scholar Thomas Malthus Thomas Robert 

Malthus (1834-1766) and one of the pioneers in this field, to remark that the population of human beings 

grows according to a geometric pattern [16]. Thomas Malthus' formula for population growth 
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𝑁(𝑡) = 𝑁(0)𝑒𝑐𝑡  

𝑡 The time 

𝑁(𝑡) Number of people 

𝑁(0) Number of people in time 𝑡 = 0  

𝑁(𝑡) = 𝑁(0)𝑒0.3𝑡;𝑁(0) = 3.9 

 

 

5. EXPERIMENTS AND RESULTS 

The performance of the algorithm KH1 has been studied using a computer simulation. The 

simulations were run in MATLAB (7.6) win8 and hp laptop, and the MSBP's performance was 

evaluated and compared to batch versions of the above approach. and In this part of the research we 

write the results of the learned artificial neural network and a comparison with the results of the Thomas 

Malthus Modeling, and as shown in table (1) and drawing (1) as drawing (1) illustrates the comparison 

between the Modeling results and the artificial neural network results, and the drawing (2) shows the 

square error rate resulting from training the artificial neural network. 

Table 1. ANN Solution vs. Thomas Malthus Modeling 

ANN 

Population (million people) 

Thomas Malthus Modeling 

Population (million people) 

4.1157 4.1194 

4.1506 4.1437 

4.1739 4.1681 

4.1903 4.1927 

4.265 4.2673 

4.3682 4.3689 

4.4666 4.473 

4.6152 4.6065 

4.6402 4.6337 

4.6709 4.661 

4.7222 4.7161 

4.7374 4.744 

4.8474 4.8569 

5.0044 5.0019 

5.0257 5.0314 

5.0559 5.0611 

5.0917 5.0909 

5.1236 5.121 

5.146 5.1512 

5.5211 5.5279 

5.7181 5.7265 

6.407 6.4037 

6.7165 6.7122 

6.8684 6.8721 

7.0869 7.0772 
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Figure.1. Comparison between the Modeling results and the artificial neural network results with error 

 

 
Figure.2. The Mean Squared Error (MSE)  

6. CONCLUSIONS 

In this work, we have proposed a new CG method for training neural networks which are based on 

the hybrid algorithm Hestenes-Stiefel and Dai-Yuan. The proposed method preserves the strong 

convergence properties and descent property. The proposed method is suitable for training large-scale 

neural networks. Our numerical experiments have shown that the proposed method efficient to predict 

the size of the population, We can use the method to predict other problems through the use of neural 

networks, as well as solving optimization, fuzzy optimization problems, solving fuzzy equations, and 

fuzzy neural networks. 
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